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Measurement of
* flow velocity
* flow rate (volume flow rate)
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Orifice meter

. D 22 recirculation Bevel angle:
/ 45° to 60°
b|
- d
Flow Flow L Edge thickness:
"' B 0.005D to 0.02D
Vr —— L
Orifice 2: Vena Contracta Ol’lflce D|ate .- *_Platc thickness:
up to 0.05D
Y
‘ L LT |

ISO standard Orifice plate

2 2
&.'_i.'.z _&+V—2—|—22
Vs 2g Yy g

_an W _n
Vs 2g Yy 2g

© Dr. A.B.M. Toufique Hasan (BUET)

L3 T1, Dept. of ME

ME 321: Fluid Mechanics-I (Jan 2025)



Orifice meter
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Then the theoretical volume flowrate could be expressed as:

Oiheo. = AV, = 4 \/ 2(]91 — p2) (i)
R
=)
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- Orifice meter ARy ‘Q‘QJ

l It is not convenient to use point 2 (vena contracta), instead orifice
diameter, d is used which could be available from geometric configuration.

Define a coefficient, namely “coefficient of contraction, C_” as:

area at the orifice

CC: -5
A, d

Then Eq. (i) comes as:

Qo =2 Jz(p = 22) (i1
_C. d’ Py
-

However, assuming C_ = 1, then Eq. (ii) can be written as:

A, d22 [_ arca at vena contracta ]

2: Vena Contracta

Vm

~ AO 2(]?1 — P ) .
cheo‘ ~ Ao 4 \/ 2(p1 —p 2) (iii) cheo. \/(1_7) \/ pf (ZV)
\/(1 ) détj " where [ = i
= D

The consideration of vena contracta (point 2) is accommodated by measuring the downstream pressure
at point 2 (NOT at the orifice).
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Orifice meter

Frictional (viscous) effect becomes very important while such obstruction

meter is used in flow systems. To accommodate such effect, empirical
discharge coefficient, C, is defined as:

C _ Qactual
g =
cheo.

Cs 4,

Qactual = thheo = \/(_)
' 1_ ﬁ4

\/2(191 - py)

Py

(v)

Pressure differential can be measured using different

approaches; for example using U-tube differential manometer as:

pl+(h’+h)7/f :p2+h’7/f+h7/m
:>p1+h7/f =p,t+hy,
— P~ P :h( m_yf)

:>p1_p2:h Ym — 7y
Py Py
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- Orifice meter =8

C, A 20 p, —
Qactual = Cthheo. = < 04 (pl pz) (V) D xlxﬂf%l
Ji-5%) Py

¢, 4 S e
Qactual = /[ == j \/2gh [m o 1] — —— L B --"""-'-'-'.'.:_'_'..'.'__'_j_' —
4 — — —
1 B ﬂ Sf h / 2:Vena Contracta

h
. _ Cd AO
.- Qactual _ \/(1_7) 2gH )
where H = h [g’" — IJ
f

S;is the specific gravity (SG) of the flowing fluid
S,, is the specific gravity (SG) of the manometric fluid

In short form:

v J29 Ca4,

Qactual — K\/ﬁ , a \/(1 _ ,34)
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Orifice meter

ASME recommends the use of curve-fit formula for C,
developed by ISO according to:

C, Zf(RCD,ﬁ)

4
C,=f(B)+91.718> Re,) "+ 01'09'6;

F,—0.03378°F,

where:
f(f)=0.5959+0.03 12,6’2‘1 -0.1 84,6’8

F,=04333 F, =047 (D: %Dtaps)
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Venturi meter

Modern venuri meter consists of an ISA 1932
nozzle entrance and a conical expansion of half
angle no greater than 15 deg. Its discharge
coefficient is given by the ISO correlation formula:

C, ~0.9858—0.1963*

d

-5
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Flow meters
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| Open Channel Flow measurement

Rectangular notch of size L x H:

Velocity at the infinitesimal element is: v =./2gh

Flowrate through the infinitesimal element is:

AQyyeo. = (Ldh)\2gh

[h
Then the actual discharge through the element becomes: il I H
_TT
anctual — Ca’thheo. — Cd (th) \ Zgh L

Then the total actual discharge :

H
O etnal = jo A0, civa

= Q= C(Ldh)\2gh

= O evar = CdLJOH \2gh dh

) 3
Qactual — g \V nga’LHz
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Open Channel Flow measurement Py ‘QQ/’

|
| Triangular notch :
Width of the strip: 2(H —h)tan(gj

Velocity at the infinitesimal element is: v =./2gh

Flowrate through the infinitesimal element is:
dQ,.., = (Z(H —h) tan(gjdh}u gh

Then the actual discharge through the element becomes:

S

anctual = Cd thheo. = Cd 2(H o h) tan(gjdh Zgh

Then the total actual discharae: = Necccmmadrmmmeeef
° dhk Lh /
= " ~ \_strip 7 —
Qactual - I anctual 1\ H
012 i
— Qactual - C J‘ 2(H h) tan( jdhﬂ 2g

> Symmetric triangular notch

actual \/7C tan( j
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Current Flow meter

| | In each subsection:

Area = Depth x Width

Veloci
oeity Depth Discharge = Area x Velocity

Current-meter discharge measurements are made
by determining the discharge in each subsection of a channel
cross section and summing the subsection discharges to obtain

a total discharge.
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| Integral Analysis = é‘?fﬁ %}W

While an estimation of gross effects (mass flow, induced force, energy change) over a finite region or
control volume (CV) are required, the integral approach is adopted. The basic equations of fluid

dynamics in integral form for a finite control volume (CV) are:

(1) Continuity equation:
volume flow rate, O = AV = constant (for mcompress ible flow)
mass flow rate, m = pAV =constant (for any flow : compressib le/incompr essible)

(2) Bernoulli Equation: (liner momentum equation)

y? . .
P + —+ z =constant (Bernoulli constant) (for mcompress ble flow)

y 2g

However, the integral approach does not enable us to obtain the detailed point-by-point information
of the flow field. For example, the integral approach could provide information on the lift generated
by a wing; it could not be used to determine the pressure and shear stress distributions that produce

the lift on the wing.
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Differential Analysis | é%[fy ”‘&;W

Once the point-by-point details of a flow pattern are required, we need to analyze an infinitesimal
region (small scale/elemental) of the flow. In this case, an infinitesimally small control volume (in
contrast to finite control volume) is taken to apply the basic conservation laws. This approach is
known as differential analysis of fluid motion.

The analysis vyields the basic differential equations of fluid motion. Appropriate boundary
conditions are required to solve these equations. In their most basic form, these differential
equations of motion are quite difficult to solve, and very little is known about their general
mathematical properties.

However, an approximation technigue known as computation fluid dynamics (CFD) has been
developed whereby the derivatives are simulated by algebraic relations between a finite number of
grid points in the flow field, which are then solved on computer.
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Conservation of Mass
formulation in differential approach
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eh

Conservation of Mass -

Mass can neither be created nor destroyed.

Consider a very small volume of space (infinitesimal control volume) through which a fluid is flowing.
For simplicity, a 2D flow is considered and the control volume is bounded by the surfaces Ax and Ay as
shown in figure. According to the law,

the net outflow of mass through the surfaces surrounding the volume

must be equal to the decrease of mass within the volume.
d Ay
T prtg (p) 5

The mass flow rate is equal to the product of density, . outflow (+ve)

velocity component normal to surface and the area of

that surface. In vector form; o | PP s 2 (pu) %"-
_53; (pu) ézf ; Al . outflow (+ve)
inflow (-ve) Y

m:Lp(V-ﬁ)dA

o e BY
Tpv 0y (p2)

inflow (-ve)

X

2 2.3 Velocities and densities for the mass-flow balance
rh a fixed volume element in two dimensions.
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- Conservation of Mass <R

A first-order Taylor series is used to evaluate the flow properties at
the faces of the element, since the properties are a function of

L. _ vlor ser
position (continuum approach (Lecture-1, 2)). aylor series

of (x) B O f(x)
h) = h —
The net outflow of mass per unit of time per unit depth is S = o " e
outflow (+ve) area outflow (+ve) area y
- B . 9 Ay
A T pv+ = (pv) =
pl/t + a(pu) Ax (Ay X 1) + IOV + a(pV) y (AX X 1) ¥ oitflow (+ve)
L ox 2 | | o 2 f
| i [ 1 (pu, pv) x
_ pu_ﬁ(PU)Ax (A)/Xl)— pv_a(pv) Ay (AXXI) pu——: Ay"y _),pu+_a%(pu)42_
| a.x 2 | | 8_)/ 2 i —5(2):- (pu) 7}: < Ax > outflow (+ve)
inflow (-ve) inflow (-ve) inflow (-ve) Y
T pv = % (p2) %
d(pu) d(pv) inflow (-ve)
= AxAy + —— AxA ~
dx i ay dtd (A) X

Figure 2.3 Velocities and densities for the mass-flow balance
through a fixed volume element in two dimensions.
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Conservation of Mass | a?/@. ‘QW

|
|
which must be equal to the rate at which the mass contained within the element decreases:

0 0

_ 9 (paxApxl)=—2
(pAx Ay x1) ~

= (prAy) ; (—ve duetodecreasein mass) (B)

mass= density x volume

Equating the above two expressions (A & B) and dividing by AxAy-

op , olpu)  O(pv) _,
ot ox oy

If z-dimension is considered, the differential form of the above expression comes as

op , 9pu)  o(pv)  O(pw) _,
ot ox oy Oz

— a_p+v.(pl7):0 . where ¥V =(u,v,w) and del operator, V= g : g , 2
ot ox Oy Oz

which is known as differential continuity equation.
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Conservation of Mass B V% @W

In case of steady flows, P

~0=0

Then the steady flow continuity equation in differential form becomes as-

o(pu)  9(pv)  Apw) _ ou  ov, ow_
Ox oy 0z Ox 8y oz
= V(pV)=0 = V.V =0
— div (pV)=0 — divF =0
Compressible flows (p# constant) Incompressible flows (p= constant)
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| Cylindrical Polar Coordinates (», 0 , z ) P,

Typical
infinitesimal

The divergence of any vector function A(r, 0,z ,t)
is found by making the transformation
of coordinates

r=(x*+y)"” 8= tan_]E z=12
X
voa=—Lay+ -2 +—A
= o (rA;) EJQ( ) (A7)

Then, the steady flow continuity equation in differential
form in cylindrical coordinate system:

V’-(pﬁ'):()

I d l
—j—r(rpu} +——(fJ'U.g) + —(p‘UJ =0
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