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Measurement of 

• flow velocity

• flow rate (volume flow rate)
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Orifice meter
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Orifice meter
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Then the theoretical volume flowrate could be expressed as:
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Orifice meter
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It is not convenient to use point 2 (vena contracta), instead orifice 
diameter, d is used which could be available from geometric configuration.

Define a coefficient, namely “coefficient of contraction, Cc” as:
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Then Eq. (i) comes as:

However, assuming Cc ≈ 1, then Eq. (ii) can be written as:
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The consideration of vena contracta (point 2) is accommodated by measuring the downstream pressure 

at point 2 (NOT at the orifice).
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Orifice meter

Frictional (viscous) effect becomes very important while such obstruction 

meter is used in flow systems. To accommodate such effect, empirical 

discharge coefficient, Cd is defined as:
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Pressure differential can be measured using different 

approaches; for example using U-tube differential manometer as:
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Orifice meter

Sf is the specific gravity (SG) of the flowing fluid

Sm is the specific gravity (SG) of the manometric fluid
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Orifice meter

Discharge coefficient of an orifice in the 

range of Reynolds number 104 to 107

ASME recommends the use of curve-fit formula for Cd 

developed by ISO according to:
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Venturi meter

Modern venuri meter consists of an ISA 1932 

nozzle entrance and a conical expansion of half 

angle no greater than 15 deg. Its discharge 

coefficient is given by the ISO correlation formula:

5.4196.09858.0 −dC
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Flow meters

Flow nozzle Orifice

Venturi meter
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Open Channel Flow measurement

L

H
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Rectangular notch of size L x H:

Velocity at the infinitesimal element is: ghv 2=

ghLdhdQtheo 2)(. =

Flowrate through the infinitesimal element is:

Then the actual discharge through the element becomes:
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Open Channel Flow measurement
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Current Flow meter
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Integral Analysis

While an estimation of gross effects (mass flow, induced force, energy change) over a finite region or 
control volume (CV) are required, the integral approach is adopted. The basic equations of fluid 
dynamics in integral form for a finite control volume (CV) are:

 (1) Continuity equation:

 

 (2) Bernoulli Equation: (liner momentum equation) 

essible)le/incomprcompressib :flowany (for constant       rate, flow mass

flow) ibleincompress(for constant   rate, flow volume

==

==

AVm

AVQ



flow) ibleincompress(for constant) (Bernoulliconstant 
2

2

=++ z
g

Vp



However, the integral approach does not enable us to obtain the detailed point-by-point information 

of the flow field. For example, the integral approach could provide information on the lift generated 

by a wing; it could not be used to determine the pressure and shear stress distributions that produce 

the lift on the wing.
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Differential Analysis

Once the point-by-point details of a flow pattern are required, we need to analyze an infinitesimal 

region (small scale/elemental) of the flow. In this case, an infinitesimally small control volume (in 

contrast to finite control volume) is taken to apply the basic conservation laws. This approach is 

known as differential analysis of fluid motion.

The analysis yields the basic differential equations of fluid motion. Appropriate boundary 

conditions are required to solve these equations. In their most basic form, these differential 

equations of motion are quite difficult to solve, and very little is known about their general 

mathematical properties.

However, an approximation technique known as computation fluid dynamics (CFD) has been 

developed whereby the derivatives are simulated by algebraic relations between a finite number of 

grid points in the flow field, which are then solved on computer.
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Conservation of Mass

Mass can neither be created nor destroyed.

Consider a very small volume of space (infinitesimal control volume) through which a fluid is flowing. 

For simplicity, a 2D flow is considered and the control volume is bounded by the surfaces ∆x and ∆y as 
shown in figure. According to the law, 

the net outflow of mass through the surfaces surrounding the volume 

must be equal to the decrease of mass within the volume.

The mass flow rate is equal to the product of density, 

velocity component normal to surface and the area of 

that surface. In vector form;
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Conservation of Mass

A first-order Taylor series is used to evaluate the flow properties at 

the faces of the element, since the properties are a function of 

position (continuum approach (Lecture-1, 2)). 

The net outflow of mass per unit of time per unit depth is
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Conservation of Mass

which must be equal to the rate at which the mass contained within the element decreases:
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Conservation of Mass

0div

0

0

=

=

=



+




+





V

V

z

w

y

v

x

u





0)(div

0)(

0
)()()(

=

=

=



+




+





V

V

z

w

y

v

x

u











In case of steady flows, 
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Then the steady flow continuity equation in differential form becomes as-

Incompressible flows (ρ= constant)Compressible flows (ρ≠ constant)
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Cylindrical Polar Coordinates (r , θ , z )

The divergence of any vector function A ( r , θ , z , t ) 
is found by making the transformation 
of coordinates

Then, the steady flow continuity equation in differential 
form in cylindrical coordinate system:
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